Beneficiation of a low-grade iron ore by combination of wet low-intensity magnetic separation and reverse flotation methods
Authors
Abstract:
Beneficiation of a low-grade iron ore was investigated by combination of the low-intensity magnetic separation and reverse flotation methods. The main constituents of the representative sample were 36.86% Fe, 8.1% FeO, 14.2% CaO, 13.6% SiO2, and 0.12% S based on the X-ray fluorescence, titration, and Leco analysis methods. The mineralogical studies by the X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe micro-analyzer, and Fe/FeO titration methods showed that the ore minerals present in the representative sample were magnetite, hematite, and goethite, and the main gangue minerals were calcite and quartz. The effects of the operating parameters including the feed size, solid content, and drum rotation speed were investigated on the performance of the wet low-intensity magnetic separation (WLIMS). The optimum operating conditions of WLIMS were determined to be feed size = 135 μm, solid content = 40%, and drum rotation speed = 50 rpm. Under these conditions, a concentrate of 62.69% Fe grade and 55.99% recovery was produced. The tailing of WLIMS with an iron grade of 28.75% was upgraded by reverse flotation with fatty acids as the collector. The effects of five parameters on two levels were investigated using the 25-1 fractional factorial design in 16 experiments. The optimum flotation conditions were determined to be pH = 12; dosage of collector, 1 kg/t; dosage of Ca2+ as activator, 4 kg/t; and dosage of starch as depressant, 1 kg/t. Under these conditions, a concentrate of 53.4% Fe grade and 79.91% recovery was produced.
similar resources
Characterization of Sangan low-grade iron ore and its processing by dry low-intensity magnetic separation
In Sangan iron mine nearly two million tons of low-grade iron ore has been extracted and deposited in the mining site and currently no action is made on them. On the other hand, the mining site is located in the semi-arid region and wet processing has been restricted due to water shortage. In this research, the upgradation of Sangan low-grade iron ore from mine B has been performed by dry low-i...
full textEffective Beneficiation of Low Grade Iron Ore Through Jigging Operation
The effectiveness of jigging operation for the beneficiation of low-grade iron ore deposits of Orissa, India has been investigated. Iron ore sample obtained from Barbil region of Orissa containing very high amount of silica and alumina was crushed using the laboratory jaw crusher and roll crusher to prepare different particle sizes. The sink and float tests were carried out to evaluate the poss...
full textBeneficiation of Low-Grade Laterite Nickel by Calcination-Magnetic Separation Method
In this research, Effect of thermal treatment on beneficiation of low-grade laterite nickel by calcination-magnetic separation method was studied. In order to determine the components and elements of the sample, to recognize the main and minor minerals and their bond, and phase transformation caused by thermal treatment, Chemical analysis (XRF and ICP), microscopic studies and XRD analysis ...
full textRECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION
In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron), which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected...
full textProcessing of Low Grade Fine Manganese Ore Using Flotation Method
Application of gravity and magnetic separation methods to upgrade low grade Manganese ores from Venaj Mine has been reported elsewhere. This paper discusses the results of flotation tests, as well as combination of flotation and magnetic method to concentrate fine particles (less than 150 microns) of manganese ore. Results obtained from various direct and reverse flotation tests, using differen...
full textProcessing of Low Grade Fine Manganese Ore Using Flotation Method
Application of gravity and magnetic separation methods to upgrade low grade Manganese ores from Venaj Mine has been reported elsewhere. This paper discusses the results of flotation tests, as well as combination of flotation and magnetic method to concentrate fine particles (less than 150 microns) of manganese ore. Results obtained from various direct and reverse flotation tests, using differen...
full textMy Resources
Journal title
volume 10 issue 1
pages 197- 212
publication date 2019-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023